Operating instructions
telos Stress Device
GA III/E
acc. to Prof. Dr. G. Scheuba
In this instruction and on the device the following symbols will be used:

**Attention – refer to the accompanying documents**
Hints for the setup, maintenance and intended operation of the telos Stress Device, type GA III/E.
Must be observed to avoid bodily injuries, malfunctions or damages to your equipment.

**Application part of type B**
The device complies with the requirements of type B for protection against electrical shock.

**Serial number of the device**
The serial number will be placed right-hand next to the symbol.

**Order number of the device**
The order number will be placed right-hand next to the symbol.

Device complies with EC-Directive 93/42/EC (MDD)

Recycling
# Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation of symbols</td>
<td>2</td>
</tr>
<tr>
<td>Table of contents</td>
<td>3</td>
</tr>
<tr>
<td>Safety Instructions</td>
<td>4</td>
</tr>
<tr>
<td>Replacing the batteries</td>
<td>4</td>
</tr>
<tr>
<td>Technical Data GA III / E</td>
<td>5</td>
</tr>
<tr>
<td>Transport and storage case</td>
<td>5</td>
</tr>
<tr>
<td>telos-Stress-Device</td>
<td>6</td>
</tr>
<tr>
<td>Instructions for use</td>
<td>8</td>
</tr>
<tr>
<td>Examination of the ligamentum talofibulare anterius</td>
<td>10</td>
</tr>
<tr>
<td>Examination of the ligamentum calcaneofibulare</td>
<td>11</td>
</tr>
<tr>
<td>Examination of the delta ligament</td>
<td>12</td>
</tr>
<tr>
<td>Examination of the ligamentum calcaneocuboidenum dorsale</td>
<td>13</td>
</tr>
<tr>
<td>Examination of the ligamentum collaterale tibiale</td>
<td>14</td>
</tr>
<tr>
<td>Examination of the ligamentum collaterale fibulare</td>
<td>15</td>
</tr>
<tr>
<td>Examination of the anterior cruciate ligament (ACL) in lateral view</td>
<td>16</td>
</tr>
<tr>
<td>Examination of the posterior cruciate ligament (PCL) in lateral view</td>
<td>17</td>
</tr>
<tr>
<td>Examination of the anterior cruciate ligament (ACL)</td>
<td>18</td>
</tr>
<tr>
<td>Examination of the posterior cruciate ligament (PCL)</td>
<td>19</td>
</tr>
<tr>
<td>Electromagnetical Compatibility (EMC)</td>
<td>20</td>
</tr>
<tr>
<td>Accessories for GA III/E (optional available)</td>
<td>21</td>
</tr>
<tr>
<td>Stress examinations of other joints</td>
<td>21</td>
</tr>
<tr>
<td>Other positioning aids</td>
<td>21</td>
</tr>
</tbody>
</table>
**Safety Instructions**

Please read the operating instructions carefully before operating the telos Stress Device.

This device is manufactured according to the rules of electrical and electromagnetical safety. In case you experience failures (e.g.: false reading or no display) caused by interferences of other appliances, operate the Stress Device in a greater distance to the interfering appliance.

To clean and disinfect we recommend the following products e.g.:

- Incidur (Hospital Hygenie)
- Meliseptol (B. Braun)
- Medicem (B. Braun)
- Melsept ST (B. Braun)
- Lysetol Med (S & M)
- Mikrozid Liquid (S & M)
- Bacillol plus (Bode)

Repair procedures are only allowed for authorized personnel who are thoroughly familiar with applicable safety regulations. If necessary, it is recommended to have the device repaired by the manufacturer in order to maintain the warranty.

To maintain the accuracy of the measuring function it is necessary to calibrate the stress device once a year.

The lifetime of the device is 5 years. After that period the device can be returned to the manufacturer for recycling purposes free of charge.

Please note that especially the batteries and electronic parts do not belong to regular waste, but have to be disposed off according to local legal regulations.

Please do not place the stress device under water!

**Replacing the batteries**

Remove the 4 screws of the front cover

Remove the 3 batteries

Insert the new batteries (Type AA) (Please note the correct polarity).

Replace the front cover and fasten the screws (tightly).

Do not use rechargeable batteries (accumulators).
### Technical Data GA III / E

**Manufacturer:** Metax GmbH  
Unter den Linden 34  
D-35410 Hungen-Obbornhofen  
Phone: +49-6036-9733-0  
Fax: +49-6036-9733-18  
URL: www.telos-stress-device.com

**Model:** telos Stress Device  
**Type:** GA III/E  
**Protection type:** B (= live wires are single insulated against contact)  
**Environmental condition for transport, storage and use:**  
10-40°C, 85% humidity  
**Classification:** acc. Annex IX MDD 93/42/EC: Im  

**Power Supply:**  
3 Mignon batteries type AA 1.5 Volts  

**Maximum force to be applied:**  
25 daN (Standard value is 15 daN)  
Accuracy at standard value ± 0.1 daN  

**Maintenance:**  
It is recommended to calibrate the telos-Stress-Device once a year in order to maintain the accuracy of the force measuring unit.  

**Dimensions (Width x Depth x Height):**  
Min. space requirement for device:  
500 x 650 x 220 mm  

**Weight:**  
Telos Stress Device w/o accessory: 13.7 kg  
Accessory: 1.0 kg  
Telos Stress Device complete: 16.3 kg

---

The device complies with the requirements of type B for protection against electrical shock and is marked with the adjacent symbol.

This symbol on the product or its packaging indicates that the appliance cannot be treated as normal domestic trash, but must be handed in at a collection point for recycling electric and electronic appliances.

Your contribution to the correct disposal of this product protects the environment and the health of your fellow men. Health and the environment are endangered by incorrect disposal. Further information about the recycling of this product can be obtained from your local town hall, your refuse collection service, or in the store at which you bought the product. This regulation is valid only in EU member states.

---

**Transport and storage case**

**Dimensions:**  
510 x 365 x 160 mm (Width x Depth x Height)
The type of ligamental rupture depends on the direction, speed and force which occur on the ligament or its attachments to the cartilage or bone.

The X-ray can only show the injury when the ligament rupture is located at the bone and contains an avulsion. Normally, ligament rupture can be demonstrated by a stress X-ray. In this case, imaging shows an extreme position of the joint, which diagnoses an opening or subluxation. For each joint there are routine methods, which allow for an examination standardization for diagnosis.

A proper functional diagnostic examination is subject to consideration of all biomechanically relevant joint stabilizing factors, which are:

1. the specific anatomy of the joint
2. the muscles
3. the capsular ligamental structures

For proper assessment of the ligament, point 1 and 2 are taken into account by positioning the patient such that his muscles are relaxed and the stress on the ligament cannot be reduced by the nature of the joint anatomy.

The design of the Telos equipment allows for correct anatomical positioning and proper equipment alignment to obtain the anatomical demonstration desired. Any muscular compensation is visible on the electronic display and may also be detected by manually examining the muscles for tension.

Before considering taking a stress X-ray, native X-rays are taken in two different planes to rule out a fracture of the bone, if clinically suspected. In such cases, a stress X-ray should not be taken.

The design of the Telos equipment allows for correct anatomical positioning and proper equipment alignment to obtain the anatomical demonstration desired. Any muscular compensation is visible on the electronic display and may also be detected by manually examining the muscles for tension.

The most common ligamental injuries are those of the anterior ankle joint ligaments (fibular side), mostly caused by supination trauma. Injuries of the medial ligaments by pronation trauma occur rather rarely and are mostly accompanied by a fracture of the fibula.

The anterior ankle joint consists of the distal ends of the two bones of the lower leg (tibia and fibula), and one tarsal bone, the talus.

The anterior ankle joint is a hinge articulation, equipped with collateral ligaments. These ligaments are characterized by their fanlike attachments which split up into several parts fixed at different points on the tarsus. Therefore, one ligament is always tense to stabilize the ankle irrespective of the position in which the lower leg and the foot move.

The telos-Stress-Device allows for separate examination of each ligament

It is recommended to start with the examination of the ligamentum talofibulare anterius, since this ligament is ruptured first with the typical supination trauma, plus the examination is less strenuous for the patient.

The ligamentum talofibulare anterius is examined in a lateral position through a subluxation of the talus into the ventral direction (The heel is fixed, the pressure is applied on the tibia.). Due to the proper positioning of the patient, the foot is flexed in plantar direction (lig. talofibulare anterius is in function), characterized by the origin of the ventral tibial condyle being shifted to the vertex of the trochlea of the talus. Thus the stabilization through the anatomy of the joint is reduced.

While applying the pressure, the foot turns slightly inwards, the tibia outwards (only possible if the knee is flexed at least 30°) around the pivot of the delta ligament suspension.

In order to obtain accurate findings, the X-ray should be taken after one minute in this case, because the talus slowly slides into the ventral direction.

The examination of the ligamentum calcaneofibulare is performed in a.-p.-view by means of the measurement of the opening angle between tibia and talus.

Due to the proper positioning of the patient the foot is in a perpendicular position to the tibia (lig. calcaneofibulare is in function). The flexion of the knee entails a rectangular position of tibia und calcaneus, so that the dorsally tapered talus is firmly fixed in the malleolar furca.

With a simple tilting motion the talus could get jammed in the furca. This problem is solved by means of the construction of the foot holding device. The heel is placed excentrically to the pivot of the footholding device which, besides the tilting motion, performs an additional movement in tensile direction, thus pulling the talus out of the furca beyond the pivot of the ligamentum deltoideum.
Moreover, flexion of the knee prevents a painrelieving hip turning motion of the patient. As to the examination of the medial ligaments of the anterior ankle joint (lig. deltoideum) the biomechanical problems are the same.

The pressure load applied in all stress examinations should not exceed 15 daN (≈15 kp). This empiric value is internationally accepted. Studies performed under fluroscopic control have shown that the joint opens at values between 6 daN and 7 daN, if the ligament to be examined is ruptured. A higher pressure load than 15 daN is not advisable, because the increasing pain-induced muscular reaction force of the patient can hardly be circumvented.

In case an X-ray is not taken with the recommended pressure load, the load actually used should be recorded on the picture to inform the attending physician in order to avoid a false diagnosis. Comparative X-rays of the count side should always be taken under the same load.

When mounting the equipment, please follow the schematic drawings which show the telos-Stress-Device from a top view. It is important to mount each accessory as depicted.

Examination of the collateral ligaments of the knee in sedentary position results in the desired flexion of 15° to 20°. An enlargement of the flexion up to 30° could be achieved easily. In case the knee shall be examined in extension, supine position of the patient in combination with supporting the heel by a cushion is recommended.

The design of the telos-Stress-Device also allows for examining the cruciate ligaments of the knee while rotating the tibia in- or outwards. Please note, that the attending physician could be exposed to indirect X-ray radiation because he has to maintain the inner or outer rotation of the tibia manually during this examination.
Instructions for use

The telos-Stress-Device consists of a frame 2, with movable extension arms 2.2, which can be adjusted to the length of the leg. The frame has four elastic footings 2.5, so that the device stands firmly on the X-ray table. The extension arms 2.2 contain two ball bearing guides 2.4 and two drill bush guides 2.3 into which a counter support 4, the foot holding device 3 and other accessories may be mounted.

The pressure device 1 has an electronical measuring equipment with a digital display 1.3. The values shown indicate the force applied in dekaNewton (daN) (e.g. read-out 15 = 15 daN ≈ 15 kp). The electronical measuring equipment is powered by three commercially available batteries.

Should the display show the same value for more than 10 minutes, the device switches to the power-saving mode. The actual value is shown for one second every five seconds. If the value changes, the device returns to normal mode. There is very little power consumption when the device switches off, so the display will work for years. If alkaline batteries are used, the lifetime will be approximately 150 - 200 hours of use. The light intensity of the display is controlled independently from the actual capacity of the batteries.

If the batteries need to be replaced the display will start to blink and indicates the user to replace the batteries. The display will still show the correct values. If the capacity decreases further the display will show '88' and blink. The danger of false measurements is ruled out in this case.

Although the electronics is quite shock-resistant it is advisable to handle the telos-Stress-Device as careful as any other precision apparatus and should not be sprayed on with solvents.

To apply pressure the grip 1.7 is turned clockwise until the desired readout is reached. The pressure device has a built-in quick adjustment function, which could be operated by pressing the release button 1.5.

Please do not use the quick adjustment function to release the pressure from the patient's leg.

Please turn the grip counter-clockwise until the display shuts off (= no pressure) and then use the quick adjustment function.

---

1. Pressure device
   1.1 Front cushion
   1.2 Extension
   1.3 Display
   1.4 Front cover
   1.5 Release button
   1.6 Threaded spindle
   1.7 Turning grip
   1.8 Safety latch
   1.9 Guiding shaft

2. Frame
   2.1 Slide rail
   2.2 Extension arm
   2.3 Drill bush guide
   2.4 Ball bearing guide
   2.5 Elastic footings

3. Foot holding device
   3.1 Fastening screw
   3.2 Fastening rubber
   3.3 Socket pin (for lateral X-ray)
   3.4 Socket pin (for a.-p.-X-ray)
   3.5 Reducer for small feet
   3.6 Fixation unit

4. Counter-support
   4.1 PU-Roller
   4.2 Socket pin

5. Extension bar

6. Accessory “Back Drawer”
   6.1 Fastening screw
   6.2 Socket pin
   6.3 PU-Roller
When mounting the pressure device 1 on the slide rail 2.1 of the frame, please secure the pressure device by sliding the safety latch 1.8 located at the bottom forward in order to avoid tilting of the pressure device while operating the telos-Stress-Device.

If the spatial proportion is appropriate it is recommended to turn the device 180° and leave the patient in his position when changing the sides to be examined.

The working principle of the telos-Stress-Device is based on a lever action with two fixed points. For examination of the ankle joint the footholding device 3 and one counter support 4 is used.

The use of the reducer 3.5 is recommended for patients with very small feet (e.g. children). The footholding device 3 has two socket pins 3.3 and 3.4. The axial pin 3.3 is used for taking X-rays in lateral view, the slanted (15°) pin 3.4 is used for taking X-rays in a.-p.-view.

The fixation unit 3.6 is used to secure the heel into the foot holding device during examinations in a.-p.-view only.

Examination of the collateral ligaments and the cruciate ligaments is done with the extension 1.2 and two counter-supports 4.

In addition, the extension bar 5 is needed to examine the cruciate ligaments in 10°-20° flexion (Lachman-Test) as well as the anterior cruciate ligament in 90°-Position (anterior drawer).

The accessory „Back Drawer“ 6 is used for the examination of the posterior cruciate ligament in a 90°-position only. This clamp serves to fix the thigh distal of the femoral condyles. The antipole is one counter-support 4.
Examination of the ligamentum talofibulare anterius

Anterior ankle joint in lateral position

Device setup for the left leg

Please note

- Mount the footholder to the extension arm by fitting the axial socket pin into the ball bearing guide.
- Mount a counter support in the drill bush guide of the opposite arm.
- Put the patient in a lateral position with the knee flexed in 30° (the leg is seen from medial).
- The heel must be placed against the center bar of the foot holder.
- Place the front cushion of the pressure device approx. 5 cm above the inner maleolus (see X-ray).
- Pressure load for routine examination should not exceed 15 daN.
- The X-ray should be taken after 1 minute of pressure application.

Device setup for the right leg

Positioning of the patient for the left leg

Positioning of the patient for the right leg

Information for diagnostics

The subluxation position of the talus (ventral direction) is measured:

- If the distance between the rearmost part of the tibia joint surface to the nearest point of the talus surface is more than 10 mm = positive findings according to the actual state of medical scientific knowledge.
- With clinical findings in combination with a measurement of 5 - 10 mm a comparative X-ray is recommended.
Examination of the ligamentum calcaneofibulare

Anterior ankle joint in a.-p.-view

Device setup for the left leg

Positioning of the patient for the left leg

Please note

- Mount the 15° slanted pin of the foot holder into the ball bearing guide.
- Mount the counter-support into the opposite ball bearing guide.
- Sit the patient with his knee approx. 20° flexed (supported with a cushion under the hollow of the knee).
- The heel should be placed firmly against the center bar of the foot holder.
- Fix the heel by pressing the fixation unit and locking the fastening screw.
- Place the front cushion of the pressure device approx. 5 cm above the inner maleolus (see X-ray).
- Pressure load for routine examination should not exceed 15 daN.

Device setup for the right leg

Positioning of the patient for the right leg

Information for diagnostics

The opening angle between tibia and talus is measured:

- A value above 10° is pathologic according to the actual state of medical scientific knowledge.
- A value between 5° - 10° makes a comparative X-ray necessary.
- In addition a difference of the distances between the tip of the fibula and talus (comparative X-ray) can be evaluated as another sign for a rupture.
Examination of the delta ligament

Anterior ankle joint in a.-p.-view

Device setup for the left leg

Please note

- Mount the 15° slanted pin of the foot holder into the ball bearing guide.
- Insert the counter-support into the opposite ball bearing guide.
- Sit the patient with his knee approx. 20° flexed (supported with a cushion under the hollow of the knee).
- The heel should be placed against the center bar of the foot holder.
- Fix the heel firmly by pressing the fixation unit and locking the fastening screw.
- Place the front cushion of the pressure device approx. 5 cm above the fibula tip (see X-ray).
- Pressure load for routine examination should not exceed 15 daN.

Device setup for the right leg

Positioning of the patient for the left leg

Positioning of the patient for the right leg

Information for diagnostics

Comparative X-rays are indispensable:

- A value above 10° is pathologic according to the actual state of medical scientific knowledge.
- A value between 5 - 10° makes a comparative X-ray necessary.
- This examination technique is rarely used in the routine diagnostics since the typical eversion trauma is generally accompanied by a fibula fracture.
Examination of the ligamentum calcaneocuboideum dorsale

Lateral Chopart’s joint in a.-p. - view

Device setup for the left leg

Device setup for the right leg

Please note

• Place the pressure device a little proximal of the tuberositas ossis navicularis. (The lateral Chopart’s joint lies more distal than the medial Chopart’s joint.)
• Sit the patient with his knee flexed at 90° and the sole flat (see fig.).
• Pressure load for routine examination should be 25 daN.

Positioning of the patient for the left leg

Positioning of the patient for the right leg

Information for diagnostics

Comparative X-rays are indispensable:

• An opening of more than 5 mm is pathologic according to the actual state of medical scientific knowledge.
• A difference of more than 2 mm between comparative x-rays is pathologic.
Examination of the ligamentum collaterale tibiale

Device setup for the left leg

Please note
- Place the pressure device exactly in the middle between the counter-supports.
- The front cushion pad of the pressure device should lie on the articular space.
- Sit the patient with the knee flexed in 15° minimum (max. 30°).
- Pressure load for routine examination should not exceed 15 daN.

Device setup for the right leg

Positioning of the patient for the left leg

Positioning of the patient for the right leg

Information for diagnostics

The width of the medial articular space is measured:
- An opening of more than 15 mm is pathologic according to the actual state of medical scientific knowledge.
- An opening of more than 10 mm: a comparative X-ray is strongly recommended.
Examination of the ligamentum collaterale fibulare

Device setup for the left leg

Please note

- Place the pressure device exactly in the middle between the counter-supports.
- The front cushion pad of the pressure device should lie on the articular space.
- Sit the patient with the knee flexed in 15° minimum (max. 30°).
- Pressure load for routine examination should not exceed 15 daN.

Device setup for the right leg

Positioning of the patient for the left leg

Positioning of the patient for the right leg

Information for diagnostics

The width of the lateral articular space is measured:

- An opening of more than 15 mm is pathologic according to the actual state of medical scientific knowledge.
- An opening of more than 10 mm: a comparative X-ray is strongly recommended.
Examination of the anterior cruciate ligament (ACL) in lateral view

(Lachman-Test)

Device setup for the left leg

Device setup for the right leg

Please note

• Position the patient in a “lateral recumbent position” (see fig.).
• Knee flexion approx. 10-20°.
• To increase the comfort of the patient it is recommended to cushion the thigh against the extension arm and to balance the height difference between thigh and lower leg.
• The front cushion pad of the pressure device should lie approx. 6 cm distal the hollow of the knee.
• Pressure load for routine examination should not exceed 15 daN, with freshly-injured muscular athletes possibly 20 daN.

Positioning of the patient for the left leg

Positioning of the patient for the right leg

Information for diagnostics

Comparative X-rays are recommended:

• The contours of the dorsal edge of the medial and lateral tibial plateau should lie as close as possible together, as well as the contours of the dorsal edge of the femoral condyles (= sufficient outer rotation).
• Anterior drawer values from 10 mm on are pathognomonic for a lesion of the anterior cruciate ligament according to the actual state of medical scientific knowledge.
• If necessary, superimpose the X-rays of both knee joints.
**Examination of the posterior cruciate ligament (PCL) in lateral view**

(Lachman-Test)

**Device setup for the left leg**

**Please note**
- Position the patient in a “lateral recumbent position” (see fig.).
- Knee flexion approx. 10-20°.
- To increase the comfort of the patient it is recommended to cushion the thigh against the extension arm and to balance the height difference between thigh and lower leg.
- The front cushion pad of the pressure device should lie on the tuberositas tibiae.
- Pressure load for routine examination should not exceed 15 daN, with freshly-injured muscular athletes possibly 20 daN.

**Device setup for the right leg**

**Positioning of the patient for the left leg**

**Positioning of the patient for the right leg**

**Information for diagnostics**

Comparative X-rays are indispensable:
- The contours of the dorsal edge of the medial and lateral tibial plateau should lie as close as possible together, as well as the contours of the dorsal edge of the femoral condyles (= sufficient outer rotation).
- Posterior drawer values from 10 mm on are pathognomonic for a lesion of the posterior cruciate ligament according to the actual state of medical scientific knowledge.
- If necessary, superimpose the X-rays of both knee joints.
Examination of the anterior cruciate ligament (ACL)

Knee in lateral view in 90°-position

Device setup for the left leg

Please note

- Position the patient in a "lateral recumbent position" (see fig.).
- Knee flexion 90°.
- To avoid double contouring of the dorsal edge of the femoral condyles cushion the ankle with a small sandbag or equivalent (= tibia is parallel to the table).
- The front cushion pad of the pressure device should lie exactly on the patella.
- Pressure load for routine examination should not exceed 15 daN.

Device setup for the right leg

Positioning of the patient for the left leg

Positioning of the patient for the right leg

Information for diagnostics

Comparative X-rays are indispensable:

- Check ventral displacement of the tibial head by superimposing the X-rays.
- A difference of 3 mm is pathological according to the actual state of medical scientific knowledge.
- A drawer of 2 mm could represent a rupture if clinically suspected.
Examination of the posterior cruciate ligament (PCL)

Knee in lateral view in 90°-position

Device setup for the left leg

15 daN

Positioning of the patient for the left leg

Please note

- Position the patient in a “lateral recumbent position” (see fig.).
- Knee flexion 90°.
- To avoid double contouring of the dorsal edge of the femoral condyles position the tibia parallel to the table.
- The accessory “back drawer” should fix the thigh closely above the femoral condyles.
- The front cushion pad of the pressure device should lie approx. 2 cm below the tibial head.
- Pressure load for routine examination should not exceed 15 daN.

Device setup for the right leg

15 daN

Positioning of the patient for the right leg

Information for diagnostics

Comparative X-rays are indispensable:

- Check dorsal displacement of the tibial head (drawer phenomenon) by superimposing the X-rays.

Accessory „Back Drawer“
Recommended separation distances between portable and mobile RF communications equipment and the telos-Stress-Device type GA III / E

The telos-Stress-Device type GA III / E is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the telos-Stress-Device type GA III / E can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the telos-Stress-Device type GA III / E as recommended below, according to the maximum output power of the communications equipment.

### Separation distance according to frequency of transmitter

<table>
<thead>
<tr>
<th>Rated maximum output power of transmitter W</th>
<th>150 kHz to 80 MHz (d = 1,2\sqrt{P})</th>
<th>80 MHz to 800 MHz (d = 1,2\sqrt{P})</th>
<th>800 MHz to 2,5 GHz (d = 2,3\sqrt{P})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>0,12</td>
<td>0,12</td>
<td>0,23</td>
</tr>
<tr>
<td>0,1</td>
<td>0,38</td>
<td>0,38</td>
<td>0,73</td>
</tr>
<tr>
<td>1</td>
<td>1,2</td>
<td>1,2</td>
<td>2,33</td>
</tr>
<tr>
<td>10</td>
<td>3,8</td>
<td>3,8</td>
<td>7,3</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>23</td>
</tr>
</tbody>
</table>

For transmitters rated at a maximum output power not listed above, the recommended separation distance \(d\) in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where \(P\) is the maximum output power rating of the transmitter on watts (W) according to the transmitter manufacturer.

**Note 1:** An additional factor of 10/3 is used in calculating the recommended separation distance for transmitters in the ISM frequency bands between 150 kHz and 80 MHz and in the frequency range 80 GHz to decrease the likelihood that mobile/portable communications equipment could cause interference if it is inadvertently brought into patient area.

**Note 1:** These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.
Accessories for GA III/E (optional available)

- Subtalar Foot holder
- Device for wrist

Stress examinations of other joints

- Device for shoulder
- Device for thumb
- Stand MBA

Other positioning aids

- Universal cassette stand
- Patella axial
- Positioning board